Pandinus imperator scorpion venom blocks voltage-gated potassium channels in nerve fibers.

نویسندگان

  • P A Pappone
  • M D Cahalan
چکیده

We have examined the effects of venom from the scorpion Pandinus imperator on the membrane currents of voltage-clamped frog myelinated nerve fibers using the Vaseline-gap method. Crude venom, applied externally in concentrations from 50 to 500 micrograms/ml, selectively blocked the voltage-gated potassium currents without affecting nodal sodium currents or resting conductances. Block of potassium channels by Pandinus venom was highly dependent on the membrane voltage, being greater at negative potentials than at positive potentials. The blocking effects of Pandinus venom were irreversible on the time scale of our experiments; however, even high concentrations of venom failed to block potassium currents completely at positive potentials. These results suggest that Pandinus venom contains a component(s) that interacts specifically and strongly with a subpopulation of axonal potassium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pandinus imperator scorpion venom blocks voltage-gated potassium channels in GH3 cells

We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentration...

متن کامل

Molecular Docking Simulation of Short-Chain Four Disulphide Bridged Scorpion Toxins with Structural Model of Human Voltage-Gated Potassium Ion Channel Kv1.3

We report structural model of the human voltage-gated potassium ion channel Kv1.3 obtained based on the crystallographic structure of KcsA by homology modeling. Molecular docking simulations were performed between the model structure of Kv1.3 channel with three short-chain four disulphide bridged scorpion toxins HsTX1 from the venom of Heterometrus spinnifer (Scorpionidae), maurotoxin (MTX) fro...

متن کامل

Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes

A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiurus quinquestriatus venom known to block Ca2+-activated K+ channels from muscle, blocked "type n"...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Structural and functional differences of two toxins from the scorpion Pandinus imperator.

The Pandinotoxins, PiTX-K alpha and PiTX-K beta, are members of the Charybdotoxin family of scorpion toxins that can be used to characterize K+ channels. PiTX-K alpha differs from PiTX-K beta, another peptide from Pandinus imperator, by one residue (P10E). When the two toxins are compared in a physiological assay, the affinity of PiTX-K beta for voltage-gated, rapidly inactivating K+ channels i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 1987